Prerequisite
For this vignette, please load the campsismod
package
and load the minimalist model that we have created in the previous
vignette.
library(campsismod)
model <- read.campsis("resources/minimalist_model/")
Define the concentration
A concentration is defined by the amount of drug present in the
central compartment divided by the apparent volume of
distribution.
Let’s now define the volume as a fixed constant of 100
in
the model. This can be achieved as follows:
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
## V=100
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
##
## [INIT]
## A_CENTRAL=1000 # Initial value
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## # A tibble: 0 × 0
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)
By default, this new equation has been appended to the model
parameters, in the MAIN
code record.
Now, we would like to define the plasma concentration. This can be
done by adding an equation into the ODE
code record. To do
that, we’ll use the argument pos
to define the position of
this equation. It can be inserted, for instance, right after the
ordinary differential equation:
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
## V=100
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
## CP=A_CENTRAL/V
##
## [INIT]
## A_CENTRAL=1000 # Initial value
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## # A tibble: 0 × 0
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)
Define an error model
Say we want to add a proportional error model on the concentration
with a coefficient of variation of 20%.
We therefore need to add a new parameter SIGMA into the model:
Then, we need to add a new ERROR
code record with the
appropriate equations:
error <- ErrorRecord()
error <- error %>% add(Equation("OBS_CP", "CP*(1 + EPS_PROP)"))
model <- model %>% add(error)
model
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
## V=100
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
## CP=A_CENTRAL/V
##
## [INIT]
## A_CENTRAL=1000 # Initial value
##
## [ERROR]
## OBS_CP=CP*(1 + EPS_PROP)
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## name index index2 value fix type
## 1 PROP 1 1 20 FALSE cv%
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)
Simulate the observed concentration
Let’s now simulate a few individuals and show
OBS_CP
.
library(campsis)
dataset <- Dataset(3) %>% add(Observations(seq(0,24,by=3)))
results <- model %>% simulate(dataset=dataset, seed=0)
spaghettiPlot(results, "OBS_CP")
A couple of useful functions in action
We can check the existence of an equation (or any other type of model
statement), by calling the function contains
.
## [1] TRUE
## [1] TRUE
In the same way, we can retrieve any model statement easily using the
function find
:
## CP=A_CENTRAL/V
## d/dt(A_CENTRAL)=-K*A_CENTRAL
For instance, right-hand side formula of equation CP
can
be retrieved as follows:
## [1] "A_CENTRAL/V"
Any model statement may be replaced using the function
replace
:
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
## V=50
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
## CP=A_CENTRAL/V
##
## [INIT]
## A_CENTRAL=1000 # Initial value
##
## [ERROR]
## OBS_CP=CP*(1 + EPS_PROP)
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## name index index2 value fix type
## 1 PROP 1 1 20 FALSE cv%
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)
Finally, model statements can also be deleted forever (making the model broken in the following case):
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
## CP=A_CENTRAL/V
##
## [INIT]
## A_CENTRAL=1000 # Initial value
##
## [ERROR]
## OBS_CP=CP*(1 + EPS_PROP)
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## name index index2 value fix type
## 1 PROP 1 1 20 FALSE cv%
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)